History of Cystic Fibrosis Newborn Screening

- 1970's: New Zealand
 - Developed method to measure immunoreactive trypsinogen (IRT) on a dried blood spot specimen using radioimmunoassay.
 - IRT is thought to be increased due to pancreatic duct dysfunction in both pancreatic-sufficient and pancreatic-insufficient infants and CF carriers in the first few weeks of life.
 - Screening by IRT was then adopted in U.K and Australia
- 1982, Colorado, first US state to initiate CF newborn screening,
 - followed shortly thereafter by “Wisconsin Cystic Fibrosis Neonatal Screening Project”- on going randomized trial, successfully demonstrated feasibility/long term efficacy for nutritional outcomes.
- Uptake slow internationally due to lack of evidence to support benefit
- After the 2004 CDC’s statement of justification-rapid uptake from 8 states 2004 to 50 in 2010 and widespread international adoption
Impact of Early Diagnosis of Newborn Screening on Outcomes

- Most disorders on the newborn screening panel responsive to treatment in first weeks of life to avoid morbidity and mortality.
- Cystic Fibrosis is different:
 - At birth pancreatic disease leads to early malabsorption/malnutrition
 - Lung disease starts early in infancy
 - **Definitive treatment has not been available that would stop disease progression in infancy**

Impact of Early Diagnosis on Outcomes- Benefits

- Clinical evidence 1980s-1990s lead to the CDC statement in 2004 that:
 - newborn screening for CF justified based on the **benefits of early intervention and treatment of early malabsorption and improved growth**.
- Additional reports, show screened infants:
 - have decreased pulmonary complications
 - can avoid early vitamin E deficiency associated with lower cognitive function
 - **potential survival advantage**
Nutritional and Pulmonary Outcomes in the First Year

- Despite catch-up growth in weight following newborn screening, linear growth impairment continues to occur during the first year.
 - Earlier, more aggressive nutritional therapy necessary for normal growth.
- Guidelines for infant care and a more aggressive approach to preventative care are in place however:
 - Lung disease known to be present in the first months of life.
 - Ability to change the early course of lung disease in CF remains limited.
 - Need for early therapies before onset of irreversible lung damage.
 - Long-term pulmonary benefits of CF newborn screening controversial.
- Hope that CFTR modulators may offer hope.

Broad Range of CFTR Dysfunction

- 1989: CFTR gene, long arm of chromosome 7 but CFTR dysfunction encompasses a wide range of phenotypes that can be challenging to diagnose:
 - Classic pancreatic-insufficient CF.
 - Pancreatic sufficient CF.
 - Indeterminate diagnoses identified by newborn screening.
 - Single-organ-system manifestations identified in adulthood.
- CFTR mutation analysis showing 2 CF-causing mutations in trans is consistent with the diagnosis of CF however >2000 mutations identified only minority are disease causing.
- CFTR2 Web site (http://www.cfr2.org/) up-to-date information on CFTR mutations, phenotypic consequences.
The Sweat Chloride Test: cornerstone of diagnosis

- Sweat test directly measures CFTR dysfunction
- Proper performance critical: requires skill and experience at accredited CF center “deceptively simple”
- Involves:
 - transdermal administration of pilocarpine by iontophoresis to stimulate sweat gland secretion
 - sweat collection into a Macroduct coil/gauze/filter paper
 - analysis of chloride concentration (chloridometer).
- Can be performed in healthy infants more than 2 kg and 2 weeks of age ideally before 30 days of life

Cystic Fibrosis Screening Algorithms

- State public health systems responsible. Adoption/implementation/follow up is variable however based on local resources and legislative/regulatory constraints.
- All state algorithms use an increased IRT level as the first stage
- Increased IRT levels can also be seen in preterm infants and in African Americans
- Therefore all states use a multistage algorithm to minimize false-positives with second stage testing using IRT/DNA for CFTR mutations
- CFTR screening mutation panels must cover the racial composition of population screened, nonwhite populations problematic
- An ultrahigh IRT algorithm proposed in some states with ethnically diverse populations whereby:
 - Infants with no mutations identified, extremely increased IRT test recalled for sweat chloride testing
Diagnosing CF in Newborn-screened Infants

- Infants with 2 CF-causing mutations on the newborn screen still need a sweat chloride for diagnosis
 - presumptive diagnosis of CF if initiation of therapies necessary
- **Value >= 60 mmol/L** in an infant with a positive newborn screen is consistent with diagnosis
- **Value < 30 mmol/L** makes CF unlikely
- A value of 30 to 59 mmol/L is “indeterminate” and suggests “possible CF”- extended CFTR mutation analysis required
- Meconium ileus:
 - false-negative screen possible
 - presumptive diagnosis of CF until further testing accomplished

Cystic Fibrosis Transmembrane Regulator Metabolic Syndrome (CRMS)

- Described after NBS became widespread
- CRMS can only be diagnosed after a newborn screen not in later life
- Infant has a positive newborn screen but indeterminate diagnosis either:
 - sweat chloride <30 mmol/L with 2 CFTR mutations, (1 unclear phenotype) or
 - sweat chloride 30-59 mmol/L and < 2 CF-causing CFTR mutations.
- Most infants remain asymptomatic, small proportion ultimately develop CF and all should be followed on a regular basis by an CF Center and PCPs should refer to the CF Center staff should CF symptoms develop
Cystic Fibrosis Transmembrane Conductance Regulator–related Disorder (CFTR-RD)

- Indeterminate diagnosis can also arise in older patients
- CFTR-RD is associated with CFTR dysfunction that does not meet diagnostic criteria for CF:
 - >1 clinical features associated with CFTR dysfunction
 - patients are symptomatic;
 - tend to have CFTR mutations result in diminished CFTR function, but not so reduced as to result in a full CF phenotype.
- Work up includes:
 - expanded genetic testing, lung function testing, chest imaging, respiratory culture, fecal elastase, genital evaluation in boys.

Changing Landscape of Cystic Fibrosis over the last decade

- Instead of being diagnosis based on symptoms, after having endured long, difficult, expensive diagnostic odyssey 62% of U.S new diagnoses in 2013 were detected by newborn screening
- Very different experience for parents
- Some individuals are still diagnosed symptomatically:
 - Born before implementation of NBS
 - False-negative newborn screen
 - Family refusal to screen
Diagnosing Cystic Fibrosis: Symptomatic Individuals

- Any child with signs/symptoms of CF or positive family history should have sweat testing regardless of CF newborn screen
 - Sweat chloride level less <39 mmol/L unlikely to be CF
 - Indeterminate sweat chloride requires extended genetic testing

Signs and symptoms suggestive of CFTR dysfunction in children and adolescents

Nutritional and gastrointestinal:
- Nutritional/metabolic: failure to thrive, hypoproteinemia, hypochloremic dehydration, chronic metabolic alkalosis
- Intestinal: meconium ileus, rectal prolapse, distal intestinal obstructive syndrome, steatorrhea
- Pancreatic: exocrine pancreatic insufficiency, recurrent pancreatitis
- Hepatic: protracted neonatal jaundice, biliary cirrhosis

Sinopulmonary:
- Chronic wet or productive cough
- Bronchiectasis on chest imaging
- Respiratory infection with *Pseudomonas aeruginosa* or other atypical gram-negative organisms
- Nasal polyposis in children
- Digital clubbing
- Allergic bronchopulmonary aspergillosis
- Obstructive azoospermia in boys
Summary

- The diagnosis of CF is straightforward in most patients.
- Rapid advances in CFTR genetics/CF NBS make clear the varying clinical manifestations of CFTR dysfunction that complicate diagnosis.
- We balance the benefits of early detection and treatment of a life-shortening illness with the risks of inconclusive diagnoses in infants who are likely to remain healthy, but in whom there is a small risk of progression to CF.
- CF newborn screening/diagnosis algorithms are likely to change in next decade based on advances in tandem mass spectrometry/extended genetic analysis, better understanding of genotype-phenotype.
- Critical to keep risks/benefits of detection of the wide range of CFTR dysfunctions in mind.

References